Hyeongji Kim,
Changkyu Choi,
Michael Christian Kampffmeyer,
Terje Berge,
Pekka Parviainen,
Ketil Malde
:
ProxyDR: Deep Hyperspherical Metric Learning with Distance Ratio-Based Formulation
Lecture Notes in Computer Science (LNCS) 2024
Changkyu Choi,
Shujian Yu,
Michael Christian Kampffmeyer,
Arnt-Børre Salberg,
Nils Olav Handegard,
Robert Jenssen
:
DIB-X: Formulating Explainability Principles for a Self-Explainable Model Through Information Theoretic Learning
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing 2024
DOI
Changkyu Choi,
Michael Kampffmeyer,
Nils Olav Handegard,
Arnt-Børre Salberg,
Robert Jenssen
:
Deep Semisupervised Semantic Segmentation in Multifrequency Echosounder Data
IEEE Journal of Oceanic Engineering 2023
ARKIV /
DOI
Changkyu Choi,
Michael Kampffmeyer,
Nils Olav Handegard,
Arnt Børre Salberg,
Olav Brautaset,
Line Eikvil
m.fl.:
Semi-supervised target classification in multi-frequency echosounder data
Changkyu Choi,
Filippo Maria Bianchi,
Michael Kampffmeyer,
Robert Jenssen
:
Short-Term Load Forecasting with Missing Data using Dilated Recurrent Attention Networks
Proceedings of the Northern Lights Deep Learning Workshop 2020
ARKIV /
DOI
Adín Ramírez Rivera,
Sarina Thomas,
Changkyu Choi
:
Unsupervised Learning of visual feature hierarchy by contrasting hierarchical topic assignments
2024
Changkyu Choi
:
Introduction to generative AI
2023
Changkyu Choi
:
DIB-X: Formulating Explainability Principles for a Self-explainable Model through Information Theoretic Learning
2023
Changkyu Choi
:
Deep learning landscape 2: Image tasks and CNNs
2023
Changkyu Choi
:
Deep learning landscape 1: Neural networks basic
2023
Changkyu Choi
:
Recent Deep Learning Models and their Applicability in the Marine Domain Now and in the Near Future
2023
Changkyu Choi,
Michael Christian Kampffmeyer,
Nils Olav Handegard,
Arnt-Børre Salberg,
Robert Jenssen
:
Deep Semi-supervised Semantic Segmentation in Multi-frequency Echosounder Data
2023
Changkyu Choi
:
Deep learning landscape 4: Transformers and their applicability in the marine domain now and in the near future
2023
Changkyu Choi
:
Deep learning landscape 3: Explainable deep learning
2023
Changkyu Choi
:
Recent Deep Learning Models and their Applicability in the Marine Domain Now and in the Near Future
2023
Changkyu Choi,
Shujian Yu,
Michael Kampffmeyer,
Arnt-Børre Salberg,
Nils Olav Handegard,
Suaiba Amina Salahuddin
m.fl.:
Explaining Marine Acoustic Target Classification in Multi-channel Echosounder Data using Self-attention Mask, Information-Bottleneck, and Mask Prior
2022
Nils Olav Handegard,
Olav Brautaset,
Changkyu Choi,
Tomasz Furmanek,
Arne Johan Hestnes,
Espen Johnsen
m.fl.:
Developing and deploying machine learning methods for acoustic data
Changkyu Choi
:
Segmenting Multi-frequency Marine Acoustic Data in a Semi-supervised Fashion
2022
Changkyu Choi
:
Information Bottleneck-based Interpretability Method in Marine Acoustic Data
2022
Changkyu Choi
:
Deep Semi-supervised Target Classification in Multi-frequency Echosounder Data
2021
Changkyu Choi
:
Semi-supervised Semantic Segmentation in Multi-frequency Echosounder Data
Changkyu Choi
:
Marine Vision: When Visual Intelligence meets Marine Science
Changkyu Choi,
Michael Kampffmeyer,
Nils Olav Handegard,
Arnt Børre Salberg,
Line Eikvil,
Robert Jenssen
:
Semi-supervised Semantic Segmentation in Multi-frequency Echosounder Data
2021
Nils Olav Handegard,
Lars Nonboe Andersen,
Olav Brautaset,
Changkyu Choi,
Inge Kristian Eliassen,
Yngve Heggelund
m.fl.:
Fisheries acoustics and Acoustic Target Classification - Report from the COGMAR/CRIMAC workshop on machine learning methods in fisheries acoustics
Nils Olav Handegard,
Changkyu Choi
:
Arbeidet hans sparer forskerne for store ressurser, og åpner for et selvstyrt fiskeri
Changkyu Choi
:
Semisupervised target classification in multifrequency echosounder data
2020
Changkyu Choi,
Filippo Maria Bianchi,
Michael Kampffmeyer,
Robert Jenssen
:
Short-Term Load Forecasting with Missing Data using Dilated Recurrent Attention Networks
Changkyu Choi,
Michael Kampffmeyer,
Robert Jenssen
:
A Robustness Analysis of Personalized Propagation of Neural Prediction