Bilde av Wickstrøm, Kristoffer
Bilde av Wickstrøm, Kristoffer
Førsteamanuensis / Maskinlæring Institutt for fysikk og teknologi kristoffer.k.wickstrom@uit.no +4777623216 Tromsø Her finner du meg

Kristoffer Wickstrøm


Stillingsbeskrivelse

Jeg er førsteamanuensis i Maskinlæringsgruppa ved UiT Norges arktiske universitet og forskningsleder for tolkbarhet i SFI Visual Intelligence. Mitt hovedforskningsområde er dyp læring, med særlig fokus på forklarbarhet og læring med begrensede data. Jeg er også interessert i usikkerhetsmodellering, informasjonsteori, kjernemetoder og medisinsk bildeanalyse. Jeg har tidligere vært gjesteforsker i bildebehandlingslaboratoriet ved Universitetet i Valencia med professor Gustau Camps-Valls og i Understandable Machine Intelligence Laboratory ved Technical University of Berlin med professor Marina M.-C. Höhne.

Se Google Scholar for en liste over mine publikasjoner.


  • Thea Brüsch, Kristoffer Wickstrøm, Mikkel N. Schmidt, Robert Jenssen, Tommy Sonne Alstrøm :
    FLEXtime: Filterbank Learning to Explain Time Series
    Communications in Computer and Information Science (CCIS) 14. oktober 2025 DOI
  • Teresa Dorszewski, Lenka Tětková, Robert Jenssen, Lars Kai Hansen, Kristoffer Knutsen Wickstrøm :
    From Colors to Classes: Emergence of Concepts in Vision Transformers
    12. oktober 2025 DOI
  • Jing Wang, Songhe Feng, Kristoffer Wickstrøm, Michael Kampffmeyer :
    AdaptCMVC: Robust Adaption to Incremental Views in Continual Multi-view Clustering
    Computer Vision and Pattern Recognition 2025 DOI
  • Duy Khoi Tran, Van Nhan Nguyen, Kristoffer Wickstrøm, Michael Kampffmeyer :
    WOODWORK: A deep-learning based framework for woodpecker damage detection in powerline inspection
    International Journal of Electrical Power & Energy Systems 01. oktober 2025 DOI
  • Solveig Thrun, Stine Hansen, Zijun Sun, Nele Blum, Suaiba Amina Salahuddin, Kristoffer Wickstrøm m.fl.:
    Reconsidering Explicit Longitudinal Mammography Alignment for Enhanced Breast Cancer Risk Prediction
    Lecture Notes in Computer Science (LNCS) 20. september 2025 DOI
  • Kristoffer Wickstrøm, Hedström, Anna, Marina Marie-Claire Höhne :
    From Flexibility to Manipulation: The Slippery Slope of XAI Evaluation | SpringerLink
    Lecture Notes in Computer Science (LNCS) 2025 DOI
  • Kristoffer Wickstrøm, Thea Brüsch, Michael Kampffmeyer, Robert Jenssen :
    REPEAT: Improving Uncertainty Estimation in Representation Learning Explainability | Proceedings of the AAAI Conference on Artificial Intelligence
    Proceedings of the AAAI Conference on Artificial Intelligence 11. april 2025 DOI
  • Lars Uebbing, Harald Lykke Joakimsen, Luigi Tommaso Luppino, Iver Martinsen, Andrew McDonald, Kristoffer Wickstrøm m.fl.:
    Investigating the Impact of Feature Reduction for Deep Learning-based Seasonal Sea Ice Forecasting
    Proceedings of Machine Learning Research (PMLR) 2025 DOI
  • Suaiba Amina Salahuddin, Elisabeth Wetzer, Kristoffer Wickstrøm, Solveig Thrun, Michael Kampffmeyer, Robert Jenssen :
    Assessing the Efficacy of Multi-task Learning in Mammographic Density Classification: A Study on Class Imbalance and Model Performance
    Lecture Notes in Computer Science (LNCS) 16. juni 2025 DOI
  • Bjørn Møller, Christian Igel, Kristoffer Knutsen Wickstrøm, Jon Sporring, Robert Jenssen, Bulat Ibragimov :
    Finding NEM-U: Explaining unsupervised representation learning through neural network generated explanation masks
    Proceedings of Machine Learning Research (PMLR) 2024 ARKIV / SAMMENDRAG / OMTALE
  • Kristoffer Wickstrøm, Daniel Johansen Trosten, Sigurd Eivindson Løkse, Ahcene Boubekki, Karl Øyvind Mikalsen, Michael Kampffmeyer m.fl.:
    RELAX: Representation Learning Explainability
    International Journal of Computer Vision 2023 DOI / ARKIV
  • Ane Blazquez-Garcia, Kristoffer Knutsen Wickstrøm, Shujian Yu, Karl Øyvind Mikalsen, Ahcene Boubekki, Angel Conde m.fl.:
    Selective Imputation for Multivariate Time Series Datasets with Missing Values
    IEEE Transactions on Knowledge and Data Engineering 2023 DOI / ARKIV
  • Eirik Agnalt Østmo, Kristoffer Wickstrøm, Keyur Radiya, Michael Kampffmeyer, Robert Jenssen :
    View it like a radiologist: Shifted windows for deep learning augmentation of CT images
    Machine Learning for Signal Processing 2023 DOI / ARKIV
  • Daniel Johansen Trosten, Rwiddhi Chakraborty, Sigurd Eivindson Løkse, Kristoffer Wickstrøm, Robert Jenssen, Michael Kampffmeyer :
    Hubs and Hyperspheres: Reducing Hubness and Improving Transductive Few-shot Learning with Hyperspherical Embeddings
    Computer Vision and Pattern Recognition 2023 DOI / ARKIV
  • Kristoffer Wickstrøm, Eirik Agnalt Østmo, Keyur Radiya, Karl Øyvind Mikalsen, Michael Kampffmeyer, Robert Jenssen :
    A clinically motivated self-supervised approach for content-based image retrieval of CT liver images
    Computerized Medical Imaging and Graphics 2023 DOI / ARKIV
  • Kristoffer Knutsen Wickstrøm, Marina Marie-Claire Höhne :
    The Meta-Evaluation Problem in Explainable AI: Identifying Reliable Estimators with MetaQuantus
    Transactions on Machine Learning Research (TMLR) 2023 ARKIV
  • Kristoffer Wickstrøm, Sigurd Eivindson Løkse, Michael Kampffmeyer, Shujian Yu, José C. Príncipe, Robert Jenssen :
    Analysis of Deep Convolutional Neural Networks Using Tensor Kernels and Matrix-Based Entropy
    Entropy 2023 DOI / ARKIV
  • Solveig Thrun, Stine Hansen, Zijun Sun, Nele Blum, Suaiba Amina Salahuddin, Xin Wang m.fl.:
    Reconsidering Spatial Alignment for Longitudinal Breast Cancer Risk Prediction
    07. desember 2025
  • Christian Salomonsen, Kristoffer Wickstrøm, Samuel Kuttner, Elisabeth Wetzer :
    Physics-Informed Deep Learning for Improved Input Function Estimation in Motion-Blurred Dynamic [18F]FDG PET Images
    16. oktober 2025
  • Christian Salomonsen, Kristoffer Wickstrøm, Samuel Kuttner, Elisabeth Wetzer :
    Physics-informed deep learning for improved input function estimation in motion-blurred dynamic [18F]FDG PET images
    24. september 2025
  • Johan Mylius-Kroken, Kristoffer Wickstrøm, Elisabeth Wetzer, Ali Ramezani-Kebrya, Robert Jenssen :
    Can a Convex Partition caused by a CPWL Neural Network be used for Density Estimation?
    National conference on image processing and machine learnin 2025
  • Christian Salomonsen, Kristoffer Wickstrøm, Samuel Kuttner, Elisabeth Wetzer :
    Physics-Informed Deep Learning for Improved Input Function Estimation in Motion-Blurred Dynamic [18F]FDG PET Images
    27. september 2025
  • Lars Uebbing, Harald Lykke Joakimsen, Kristoffer Wickstrøm, Michael Kampffmeyer, Sebastien Francois Lefevre, Arnt Børre Salberg m.fl.:
    NOFE - Neural Operator Function Embedding
    2025
  • Lars Uebbing, Harald Lykke Joakimsen, Kristoffer Wickstrøm, Michael Kampffmeyer, Sebastien Francois Lefevre, Arnt Børre Salberg m.fl.:
    NOFE Neural Operator Function Embedding
    2025 DOI
  • Solveig Thrun, Stine Hansen, Zijun Sun, Nele Blum, Suaiba Amina Salahuddin, Kristoffer Wickstrøm m.fl.:
    Reconsidering Explicit Longitudinal Mammography Alignment for Enhanced Breast Cancer Risk Prediction
    20. september 2025
  • Simen Strømme, Kristoffer Wickstrøm, Kristoffer Søvik, Geir Lippestad, Johannes Bergh :
    Politiske partier har lansert KI-chatboter
    13. mai 2025 DOI
  • Elisabeth Wetzer, Youssef Wally, Artem Galushko, Elisavet Kozyri, Kristoffer Wickstrøm :
    How to Tackle Bias and Protect Privacy in the Age of AI?
    17. september 2025
  • Christian Salomonsen, Kristoffer Wickstrøm, Elisabeth Wetzer, Samuel Kuttner :
    Physics-Informed Machine Learning for dynamic PET modeling
    2025
  • Christian Salomonsen, Kristoffer Wickstrøm, Elisabeth Wetzer, Samuel Kuttner :
    Physics-informed deep learning for predicting the arterial input function in dynamic PET imaging
    2025
  • Suaiba Amina Salahuddin, Elisabeth Wetzer, Kristoffer Wickstrøm, Solveig Thrun, Michael Kampffmeyer, Robert Jenssen :
    Assessing the Efficacy of Multi-task Learning in Mammographic Density Classification: A Study on Class Imbalance and Model Performance
    2025
  • Christian Salomonsen, Kristoffer Wickstrøm, Elisabeth Wetzer, Samuel Kuttner :
    Physics-informed deep learning for improved input function estimation in motion-blurred dynamic [18F]FDG PET images
    2025
  • Petter Bjørklund, Kristoffer Knutsen Wickstrøm, Keyur Radiya :
    Finner leverkreft med kunstig intelligens
    uit.no 2024
  • Robert Jenssen, Kristoffer Knutsen Wickstrøm, Petter Bjørklund :
    Slik kan kunstig intelligens hjelpe legene
    Forskning.no 2024
  • Kristoffer Knutsen Wickstrøm :
    Kunstig intelligens fra beslutningstøtte til beslutningstaker – hvem er ansvarlig når ting går galt?
    2024
  • Kristoffer Knutsen Wickstrøm :
    Forskningsfronten på kunstig intelligens
    2024
  • Lars Uebbing, Harald Lykke Joakimsen, Luigi Tommaso Luppino, Iver Martinsen, Andrew McDonald, Kristoffer Knutsen Wickstrøm m.fl.:
    Investigating the Impact of Feature Reduction for Deep Learning-based Seasonal Sea Ice Forecasting
    2024
  • Kristoffer Knutsen Wickstrøm :
    Muligheter og utfordringer for kunstig intelligens i næringslivet
    2024
  • Petter Bjørklund, Robert Jenssen, Kristoffer Knutsen Wickstrøm :
    KI har superkrefter som kan hjelpe legene våre
    uit.no 2024 FULLTEKST
  • Christian Salomonsen, Kristoffer Knutsen Wickstrøm, Elisabeth Wetzer, Samuel Kuttner :
    Kinetic modeling based compound loss for deep learning derived input function prediction in dynamic [18F]FDG PET images of mice
    2024
  • Christian Salomonsen, Kristoffer Knutsen Wickstrøm, Elisabeth Wetzer, Samuel Kuttner :
    Kinetic modeling based compound loss for deep learning derived input function prediction in dynamic [18F]FDG PET images of mice
    2024
  • Christian Salomonsen, Kristoffer Knutsen Wickstrøm, Elisabeth Wetzer, Samuel Kuttner :
    Kinetic modeling based compound loss for deep learning derived input function prediction in dynamic [18F]FDG PET images of mice
    2024
  • Kristoffer Knutsen Wickstrøm :
    Morrasendinga fra NRK i Troms - Forskere ved UiT Norges arktiske universitet utvikler kunstig intelligens til å finne leverkreft.
    10. juni 2024
  • Kristoffer Knutsen Wickstrøm :
    Facebook skal merke KI-bilder: – Stor nyhet
    07. februar 2024
  • Kristoffer Knutsen Wickstrøm :
    Kunstig Intelligens, utfordringer og muligheter for næringslivet
    2024
  • Robert Jenssen, Kristoffer Knutsen Wickstrøm :
    Ja takk til «krysskulturelle» prosjekter drevet fram av teknologiutvikling
    2023
  • Robert Jenssen, Kristoffer Knutsen Wickstrøm :
    Hvordan bør fotavtrykket av regjeringens satsing på kunstig intelligens se ut i Nord-Norge i 2030?
    2023
  • Kristoffer Wickstrøm :
    The aggregation method matters in faithfulness evaluation of XAI
    2023
  • Andreas Kvammen, Kristoffer Wickstrøm, Samuel Kociscak, Jakub Vaverka, Libor Nouzák, Arnaud Zaslavsky m.fl.:
    Machine learning detection of dust impact signals
    2023
  • Kristoffer Knutsen Wickstrøm :
    XAI for time series analysis
    2023
  • Kristoffer Knutsen Wickstrøm :
    XAI for understanding of SSL representations
    2023

  • De 50 siste resultatene fra Cristin vises på siden. Se alle arbeider i Cristin her →


    Forskningsinteresser

    Dyp læring.
    Tolkbar kunstig intelligens.
    Usikkerhetsanalyse.
    Medisinsk bildeanalyse.
    Læring med begrenset data.


    Medlem i forskningsgruppe



    Forskningsparken 1 B277


    Klikk for større kart