autumn 2019
MAT-2201 Numerical Methods - 10 ECTS
Admission requirements
Applicants from Nordic countries: Generell studiekompetanse og følgende spesielle opptakskrav: Matematikk R1 + R2 og i tillegg enten:
- Fysikk 1 + 2 eller
- Kjemi 1+ 2 eller
- Biologi 1 + 2 eller
- Informasjonsteknologi 1 +2 eller
- Geofag 1 + 2 eller
- Teknologi og forskningslære 1 + 2
International applicants: Higher Education Entrance Qualification and certified language requirements in English. It is a requirement that students have some prior knowledge of biology and ecology, chemistry and mathematics (Participants must have taken introductory level university courses, and achieved pass grades, in these subjects).
A list of the requirements for the Higher Education Entrance Qualification in Norway can be found on the Norwegian Agency for Quality Assurance in Education website - nokut.no
Recommended prerequsites is MAT-1003 Calkulus 3 and MAT-1004 Linear algebra or equal.
Application code: 9336 (Nordic applicants).
Course content
This course gives an introduction to basic concepts and issues of numerical computation. The topics treated include: Binary representation and floating point numbers, round-off errors, conditioning, rates of convergence, truncation and discretization errors, best approximation, numerical stability, and complexity analysis. Selected methods will be covered for some of these classes of problems: Linear systems of equations, nonlinear equations, overdetermined linear systems, numerical differentiation and integration, and numerical solution of differential equations.Objectives of the course
After the course the student should:
- Be able to analyze methods for numerical calculations with respect to errors and complexity
- Have mathematical understanding for the methods they apply
- Know the main features in IEEE-standards for binary number representation
- Be able to use iterative methods, like the Jacobi-method for systems of linear equations, and Newtons method for non-linear equations, and be able to describe convergence properties.
- Be able to describe Gaussian elimination and LU factorization, and know QR factorization, and how this is used to find least squares solutions.
- Know the problem of polynomial interpolation, how to solve it, and how to prove unqueness. They should be able to use Chebychev polynomials as tools.
- Use Taylor¿s theorem to find errors of discretization when calculating dericatives and finite difference.
- Know simple methods for numerical calculation of integrals, such as the Trapezoid method and Simpson¿s formula, and general results about global errors, when local errors are known.
- Know the simplest algorithms for stepwise numerical solution of initial value problems for systems of first order differential equations, and know how to reformulate a higher order differential equation to such a system.
Assessment
Written final exam of 4 hours duration, counting 100 %.
Assessment scale: Letter grades A-F.
Postponed examination:
Students with valid grounds for absence will be offered a postponed examination early in the following semester.
For further details see:
- Utfyllende bestemmelser for eksamener ved Fakultet for naturvitenskap og teknologi (only in Norwegian)
- Regulations for examinations at the University of Tromsø
Coursework requirements
A passing grade is required on the mandatory homework sets for permission to take the exam.
Error rendering component
- About the course
- Campus: Tromsø |
- ECTS: 10
- Course code: MAT-2201
- Responsible unit
- Institutt for matematikk og statistikk
- Kontaktpersoner
-
- Tidligere år og semester for dette emnet