LacZymes - A structural view on enzymes involved in ß-lactam antibiotic resistance

Publications

  1. Jia, Y., Schröder, B., Pfeifer, Y., Fröhlich, C., Deng, L., Arkona, C., Kuropka, B., Sticht, J., Ataka, K., Bergemann, S., Wolber, G., Nitsche, C., Mielke, M., Leiros, H.-K. S., Werner, G. & Rademann, J. (2023) Kinetics, thermodynamics, and structural effects of quinoline-2-carboxylates, zinc-binding inhibitors of New Delhi metallo-β-lactamase-1 (NDM 1) re-sensitizing multi-drug resistant bacteria for carbapenems, J Med Chem. 66 (17), 11761-11791. doi.org/10.1021/acs.jmedchem.3c00171
  2. Palica, K., Deufel, F., Skagseth, S., Santo Metzler, G. P. D., Thoma, J., Rasmussen, A. A., Valkonen, A., Sunnerhagen, P., Leiros, H.-K. S., Andersson, H. & Erdélyi, M. (2023) α-Aminophosphonate inhibitors of metallo-β-lactamases NDM-1 and VIM-2, RSC Medicinal Chemistry. doi.org/10.1039/D3MD00286A
  3. Fröhlich C., Sørum, V., Tokuriki, N., Johnsen P.J. & Samuelsen Ø. (2022) Evolution of β-lactamase-mediated cefiderocol resistance. J. Antimicrob. Chemother. 77(9):2429-2436. doi: 10.1093/jac/dkac221
  4. Palica, K., Vorácová, M., Skagseth, S., Rasmussen, A.R., Allander, L., Hubert, M.,Sandegren, L., Leiros, H.-K.S., Andersson, H. & Erdélyi, M. (2022) Metallo-β-lactamase inhibitor phosphonamidate monoesters.  2022 ACS Omega, 25;7(5):4550-4562. doi: 10.1021/acsomega.1c06527
  5. Lund, B.A., Thomassen, A.M., Carlsen, T.J.W & Leiros, H.-K.S.* (2021) Biochemical and biophysical characterization of the OXA-48-like carbapenemase OXA-436. Acta Crystallogr F Struct Biol Commun. 77 (9), 312-318. doi: 10.1107/S2053230X21008645.
  6. Fröhlich C., Gama J.A., Harms K., Hirvonen V.H.A., Lund B.A., van der Kamp M.W., Johnsen P.J., Samuelsen Ø. and Leiros H.-K.S.* (2021) Cryptic β-lactamase evolution is driven by low β-lactam concentrations. bioRxiv, 2020.2012.2001.404343. First published on, doi: 10.1101/2020.12.01.404343. mSphere. 6(2):e00108-21. doi: 10.1128/mSphere.00108-21.
  7. Leiros, H.-K.S.* Thomassen, A. M., Samuelsen, Ø., Flach, C.-F., Kotsakis, S. D. & Larsson, D. G. J. (2020) Structural insights into the enhanced carbapenemase efficiency of OXA-655 compared to OXA-10. Febs Open Bio, 10(9):1821-1832. doi: 10.1002/2211-5463.12935.
  8. Muhammad, Z., Skagseth, S., Boomgaren, M., Akhter, S., Fröhlich, C., Ismael, A., Christopeit, T., Bayer, A. & Leiros, H.-K.S.* (2020) Structural studies of triazole inhibitors with promising inhibitor effects against antibiotic resistance metallo-β-lactamases. Bioorganic & Medicinal Chemistry. 28(15):115598. doi: 10.1016/j.bmc.2020.115598.
  9. Fröhlich, C., Sørum, V., Huber, S., Samuelsen, Ø., Berglund, F., Kristiansson, E., Kotsakis, S. D., Marathe, N. P., Larsson, D. G. J. & Leiros, H.-K.S. (2020) Structural and biochemical characterization of the environmental metallo-β-lactamases MYO-1, ECV-1 and SHD-1. J. Antimicrob. Chemother. 75(9):2554-2563. doi:10.1093/jac/dkaa175.
  10. Samuelsen, Ø., Åstrand, O. A. H., Fröhlich, C., Heikal, A., Skagseth, S., Carlsen, T. J. O., Leiros, H.-K. S., Bayer, A., Schnaars, C., Kildahl-Andersen, G., Lauksund, S., Finke, S., Huber, S., Gjøen, T., Andresen, A. M. S., Økstad, O. A. & Rongved, P. (2020) ZN148 – a modular synthetic metallo-β-lactamase inhibitor reverses carbapenem-resistance in Gram-negative pathogens in vivo. Antimicrob Agents Chemother, 64 (6), e02415-19.  AAC.02415-19. DOI:10.1128/AAC.02415-19
  11. Fröhlich, C., Sørum, V., Thomassen, A. M., Johnsen, P. J., Leiros, H.-K. S., & Samuelsen, Ø. (2019) OXA-48-Mediated Ceftazidime-Avibactam Resistance Is Associated with Evolutionary Trade-Offs. mSphere 4 (2). pii: e00024-19. doi: 10.1128/mSphere.00024-19.
  12. Prandina, A., Radix, S., Borgne, M. L., Jordheim, L. P., Bousfiha, Z., Fröhlich, C., Leiros, H.-K. S., Samuelsen, Ø., Frøvold, E., Rongved, P. & Åstrand, O. A. H. (2019) Synthesis and biological evaluation of new dipicolylamine zinc chelators as metallo-β-lactamase inhibitors, Tetrahedron, 75 (2), 1525-1540: DOI: 10.1016/j.tet.2019.02.004
  13. Lund, B. A., Thomassen, A. M., Nesheim, B. H. B., Carlsen, T. J., Isaksson, J., Christopeit, T., and Leiros, H.-K. S.* (2018) The biological assembly of OXA-48 reveal a dimer interface high charge complementarity and very high affinity, FEBS J. 285 (22), 4214-4228 doi:10.1111/febs.14643.
  14. Akhter. S., Lund, B. A., Isamel, A., Lange, M., Isaksson, J., Christopeit, T., Leiros, H.-K. S.* & Bayer, A. (2018) A focused fragment library targeting the antibiotic resistance enzyme - Oxacillinase-48: Synthesis, structural evaluation and inhibitor design., Eur J Med Chem. 145, 634-648. DOI: 10.1016/j.ejmech.2017.12.085
  15. Marcoccia, F., Leiros, H.-K. S., Aschi, M., Amicosante, G. & Perilli, M. (2018) Exploring the role of L209 residue in the active site of NDM-1 a metallo-β-lactamase, PLOS One13 (1), e0189686. DOI: 10.1371/journal.pone.0189686.
  16. Samuelsen, Ø., Hansen, F., Aasnæs, B., Hasman, H., Lund, B.A., Leiros, H.K.S.,Lilje, B., Janice, J., Jakobsen, L., Littauer, P., Søes, L.M., Holzknecht, B.J., Andersen, L.P., Stegger, M., Andersen, P.S., Hammerum, A.M. (2017). Dissemination and Characteristics of a Novel Plasmid-Encoded Carbapenem-Hydrolyzing Class D β-Lactamase, OXA-436 from Four Patients Involving Six Different Hospitals in Denmark. Antimicrob Agents Chemother. 62 (1)  pii: e01260-17.  doi: 10.1128/AAC.01260-17. 
  17. Lund, B. A., Thomassen, A. M., Nesheim, B. H. B., Carlsen, T. J., Isaksson, J., Christopeit, T., and Leiros, H.-K. S.* (2018) The biological assembly of OXA-48 reveal a dimer interface high charge complementarity and very high affinity, FEBS J. 285 (22), 4214-4228 doi:10.1111/febs.14643.
  18. Lund, B.A., Thomassen, A.M., Carlsen, T.J.O., Leiros, H.-K.S.* (2017) Structure, activity and thermostability investigations of OXA-163, OXA-181 and OXA-245 using biochemical analysis, crystal structures and differential scanning calorimetry analysis. Acta Crystallogr F Struct Biol Commun. 73(Pt 10), 579-587. doi.org/10.1107/S2053230X17013838
  19. Skagseth, S., Christopeit, T., Akhter, S., Bayer, A., Samuelsen, Ø. & Leiros, H.-K. S.*(2017) Structural insights into TMB-1 and the role of residue 119 and 228 in substrate and inhibitor binding,  Antimicrobial Agents and Chemotherapy. 61 (8), e02602-16. doi.org/10.1128/AAC.02602-16.
  20. Skagseth, S., Akhter, S., Paulsen, M.H., Muhammad, Z., Lauksund, S., Samuelsen, Ø., Leiros, H.-K. S.* & Bayer, A.*(2017) Metallo-β-lactamase inhibitors by bioisosteric replacement: preparation, activity and binding, European Journal of Medicinal Chemistry. 138, 159-173. doi.org/10.1016/j.ejmech.2017.04.035.
  21. Christopeit, T., Yang, K.-W., Yang, S.-K. & Leiros, H.-K. S.*(2016) The structure of the metallo-β-lactamase VIM-2 in complex with a triazolylthioacetamide inhibitor, Acta Crystallogr F Struct Biol Commun72, 813-819. DOI: 10.1107/S2053230X16016113.
  22. Lund, B.A., Christopeit, T., Guttormsen, Y., Bayer, A.,Leiros, H.-K.S.* (2016). Surface plasmon resonance based screening and design of inhibitor scaffolds for the antibiotic resistance enzyme OXA-48. J. Med. Chem.: 59, 5542–5554. Doi.org/10.1021/acs.jmedchem.6b00660.
  23. Christopeit, T., Albert, A., Leiros, H.-K.S.*(2016) Discovery of a novel covalent non-ß-lactam inhibitor of the metallo-ß-lactamase NDM-1, Bioorg. Med. Chem.24: 2947-53. DOI.org/10.1016/j.bmc.2016.04.064
  24. Christopeit, T.,Leiros, H.-K.S.* (2016). Fragment-based Discovery of Inhibitor Scaffolds Targeting the Metallo-ß-lactamases NDM-1 and VIM-2. Bioorg. Med. Chem. Lett. 8:1973-1977.  DOI.org/10.1016/j.bmcl.2016.03.004
  25. Skagseth, S., Carlsen, T.J., Bjerga, G.E., Spencer, J., Samuelsen, Ø.,Leiros, H.-K.S. * (2015). Investigating the role of residues W228 and Y233 in the structure and activity of the GIM-1 metallo-ß-lactamase. Role of Residues W228 and Y233 in the Structure and Activity of Metallo-ß-Lactamase GIM-1. Antimicrob. Agents. Chemother. 60, 990-1002. DOI.org/10.1128/aac.02017-15.
  26. Christopeit T., Carlsen, T.J., Helland, R.,Leiros H.-K.S.* (2015). Discovery of Novel Inhibitor Scaffolds against the Metallo-ß-lactamase VIM-2 by Surface Plasmon Resonance (SPR) Based Fragment Screening. J. Med. Chem. 58: 8671-8682. DOI.org/10.1021/acs.jmedchem.5b01289
  27. Leiros, H.-K. S.,*Edvardsen, K. S., Bjerga, G. E. K. & Samuelsen, Ø. (2015). Structural and biochemical characterization of VIM-26 show that Leu224 has implications for the substrate specificity of VIM metallo-ß-lactamases. The FEBS journal282(6), 1031-1042. DOI.org/10.1111/febs.13200
  28. Leiros, H.-K. S.*,Skagseth, S., Edvardsen, K. S. W., Lorentzen, M. S., Bjerga, G. E. K., Leiros, I. & Samuelsen, Ø. (2014) His224 Alters the R2 Drug Binding Site and Phe218 Influences the Catalytic Efficiency of the Metallo-ß-Lactamase VIM-7. Antimicrob. Agents Chemother. 58, 4826-36. DOI.org/10.1128/AAC.02735-13.
  29. Lund, B.A., Leiros, H.-K.S.& Bjerga, G.E.K. (2014) A high-throughput, restriction-free cloning strategy based on ccdB-gene replacement. Microbial Cell Factories13 (1), 38. DOI.org/10.1186/1475-2859-13-38
  30. Borra, P. S. Samuelsen, Ø Spencer, J. Walsh, T. R., Lorentzen, M.S. & Leiros, H-K.S.*(2013) Crystal structures of Pseudomonas aeruginosa GIM-1: Active site plasticity in metallo-ß-lactamases Antimicrob Agents Chemother. 57, 848-54. DOI: 10.1128/AAC.02227-12
  31. Leiros, H-K.S.,*Borrai, P.S., Brandsdal, B.O., Edvardsen, K.S., Spencer, J., Walsh, T.R. & Samuelsen Ø. (2012) Crystal structure of the mobile metallo-ß-lactamase AIM-1 from Pseudomonas aeruginosa: insights into antibiotic binding and the role of Gln157. Antimicrob. Agents Chemother. 56, 4341-4353.  DOI: 10.1128/AAC.00448-12
  32. Borra, P.S., Leiros, H.-K.S.,Ahmad, R., Spencer, J., Leiros, I., Walsh, T.R., Sundsfjord, A. & Samuelsen Ø. (2011) Structural and computational investigations of VIM-7: Insights into the substrate specificity of VIM metallo-ß-lactamases. J. Mol. Biol., 411 (1), 174-189. DOI: 10.1016/j.jmb.2011.05.035
 



Ansvarlig for siden: Leiros, Hanna-Kirsti Schrøder
Sist oppdatert: 08.11.2023 13:43