Jonas Berg Hansen,
Andrea Cini,
Filippo Maria Bianchi
:
On Time Series Clustering with Graph Neural Networks
Transactions on Machine Learning Research (TMLR) 31. august 2025
DOI /
ARKIV
Andrea Cini,
Alexander Jenkins,
Danilo Mandic,
Cesare Alippi,
Filippo Maria Bianchi
:
Relational Conformal Prediction for Correlated Time Series
2025 42th International Conference on Machine Learning 01. mai 2025
DOI /
ARKIV
Carlo Abate,
Filippo Maria Bianchi
:
MaxCutPool: differentiable feature-aware Maxcut for pooling in graph neural networks
International Conference on Learning Representations 22. januar 2025
DOI /
ARKIV
Jakob Grahn,
Filippo Maria Bianchi,
Karsten Müller,
Eirik Malnes
:
Data-driven avalanche forecasting using weather and satellite data
International Snow Science Workshops (ISSW) Proceedings 2024
ARKIV
Ivan Marisca,
Cesare Alippi,
Filippo Maria Bianchi
:
Graph-based Forecasting with Missing Data through Spatiotemporal Downsampling
Karoline Ingebrigtsen,
Filippo Maria Bianchi,
Sigurd Bakkejord,
Inga Setså Holmstrand,
Matteo Chiesa
:
Identifying conditions leading to power quality events in Arctic Norway: Feature selection
Indro Spinelli,
Michele Guerra,
Filippo Maria Bianchi,
Simone Scardapane
:
Combining Stochastic Explainers and Subgraph Neural Networks can Increase Expressivity and Interpretability
ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning 2023
DOI /
ARKIV
Andrea Cini,
Ivan Marisca,
Filippo Maria Bianchi,
Cesare Alippi
:
Scalable Spatiotemporal Graph Neural Networks
Proceedings of the AAAI Conference on Artificial Intelligence 2023
DOI /
ARKIV
Filippo Maria Bianchi
:
Simplifying Clustering with Graph Neural Networks
Proceedings of the Northern Lights Deep Learning Workshop 23. januar 2023
DOI /
ARKIV
Filippo Maria Bianchi,
Veronica Lachi
:
The expressive power of pooling in Graph Neural Networks
Odin Foldvik Eikeland,
Colin C. Kelsall,
Kyle Buznitsky,
Shomik Verma,
Filippo Maria Bianchi,
Matteo Chiesa
m.fl.:
Power availability of PV plus thermal batteries in real-world electric power grids
Michele Guerra,
Indro Spinelli,
Simone Scardapane,
Filippo Maria Bianchi
:
Explainability in subgraphs-enhanced Graph Neural Networks
Proceedings of the Northern Lights Deep Learning Workshop 23. januar 2023
DOI /
ARKIV
Michele Guerra,
Simone Scardapane,
Filippo Maria Bianchi
:
Probabilistic Load Forecasting With Reservoir Computing
Jonas Berg Hansen,
Filippo Maria Bianchi
:
Total Variation Graph Neural Networks
Proceedings of Machine Learning Research (PMLR) 2023
ARKIV
Jonas Berg Hansen,
Stian Normann Anfinsen,
Filippo Maria Bianchi
:
Power Flow Balancing With Decentralized Graph Neural Networks
IEEE Transactions on Power Systems 01. august 2022
DOI /
ARKIV
Odin Foldvik Eikeland,
Filippo Maria Bianchi,
Inga Setså Holmstrand,
Sigurd Bakkejord,
Sergio Santos Hernandez,
Matteo Chiesa
:
Uncovering Contributing Factors to Interruptions in the Power Grid: An Arctic Case
Luigi Tommaso Luppino,
Mads Adrian Hansen,
Michael Kampffmeyer,
Filippo Maria Bianchi,
Gabriele Moser,
Robert Jenssen
m.fl.:
Code-Aligned Autoencoders for Unsupervised Change Detection in Multimodal Remote Sensing Images
IEEE Transactions on Neural Networks and Learning Systems 12. mai 2022
DOI /
ARKIV
Odin Foldvik Eikeland,
Finn Dag Hovem,
Tom Eirik Olsen,
Matteo Chiesa,
Filippo Maria Bianchi
:
Probabilistic forecasts of wind power generation in regions with complex topography using deep learning methods: An Arctic case
Energy Conversion and Management: X 2022
DOI /
ARKIV
Daniele Grattarola,
Daniele Zambon,
Filippo Maria Bianchi,
Cesare Alippi
:
Understanding Pooling in Graph Neural Networks
IEEE Transactions on Neural Networks and Learning Systems 21. juli 2022
DOI /
ARKIV
Jakob Grahn,
Filippo Maria Bianchi
:
Recognition of Polar Lows in Sentinel-1 SAR Images With Deep Learning
IEEE Transactions on Geoscience and Remote Sensing 06. september 2022
DOI /
ARKIV
Vilde Jensen,
Filippo Maria Bianchi,
Stian Normann Anfinsen
:
Ensemble Conformalized Quantile Regression for Probabilistic Time Series Forecasting
IEEE Transactions on Neural Networks and Learning Systems 2022
DOI /
ARKIV
Iver Martinsen,
Alf Harbitz,
Filippo Maria Bianchi
:
Age prediction by deep learning applied to Greenland halibut (Reinhardtius hippoglossoides) otolith images
Anne Gerd Imenes,
Nadia Saad Noori,
Ole Andreas Nesvåg Uthaug,
Robert Kröni,
Filippo Maria Bianchi,
Nabil Belbachir
:
A Deep Learning Approach for Automated Fault Detection on Solar Modules Using Image Composites
Filippo Maria Bianchi,
Daniele Grattarola,
Lorenzo Livi,
Cesare Alippi
:
Graph Neural Networks With Convolutional ARMA Filters
IEEE Transactions on Pattern Analysis and Machine Intelligence 26. januar 2021
DOI /
ARKIV
Karl Øyvind Mikalsen,
Cristina Soguero Ruiz,
Filippo Maria Bianchi,
Arthur Revhaug,
Robert Jenssen
:
Time series cluster kernels to exploit informative missingness and incomplete label information
Filippo Maria Bianchi,
Simone Scardapane,
Sigurd Løkse,
Robert Jenssen
:
Reservoir Computing Approaches for Representation and Classification of Multivariate Time Series
IEEE Transactions on Neural Networks and Learning Systems 2021
DOI /
ARKIV
Luigi Tommaso Luppino,
Michael Kampffmeyer,
Filippo Maria Bianchi,
Gabriele Moser,
Sebastiano Bruno Serpico,
Robert Jenssen
m.fl.:
Deep Image Translation With an Affinity-Based Change Prior for Unsupervised Multimodal Change Detection
IEEE Transactions on Geoscience and Remote Sensing 2021
DOI /
ARKIV
Odin Foldvik Eikeland,
Inga Setså Holmstrand,
Sigurd Bakkejord,
Matteo Chiesa,
Filippo Maria Bianchi
:
Detecting and Interpreting Faults in Vulnerable Power Grids With Machine Learning
Huamin Ren,
Filippo Maria Bianchi,
Jingyue Li,
Rasmus L. Olsen,
Robert Jenssen,
Stian Normann Anfinsen
:
Towards Applicability: A Comparative Study on Non-Intrusive Load Monitoring Algorithms
Martin Wibe Rypdal,
Kristoffer Rypdal,
Ola Løvsletten,
Sigrunn Holbek Sørbye,
Elinor Ytterstad,
Filippo Maria Bianchi
:
Estimation of Excess Mortality and Years of Life Lost to COVID-19 in Norway and Sweden between March and November 2020
International Journal of Environmental Research and Public Health (IJERPH) 2021
DOI /
ARKIV
Filippo Maria Bianchi,
Claudio Gallicchio,
Alessio Micheli
:
Pyramidal Reservoir Graph Neural Network
Odin Foldvik Eikeland,
Filippo Maria Bianchi,
Matteo Chiesa,
Harry Apostoleris,
Morten Hansen,
Yu-Cheng Chiou
:
Predicting Energy Demand in Semi-Remote Arctic Locations
Filippo Maria Bianchi,
Daniele Grattarola,
Cesare Alippi
:
Spectral Clustering with Graph Neural Networks for Graph Pooling
Proceedings of Machine Learning Research (PMLR) 2020
ARKIV
Filippo Maria Bianchi,
Daniele Grattarola,
Lorenzo Livi,
Cesare Alippi
:
Hierarchical Representation Learning in Graph Neural Networks With Node Decimation Pooling
IEEE Transactions on Neural Networks and Learning Systems 2020
DOI /
ARKIV /
ARKIV
Filippo Maria Bianchi,
Jakob Grahn,
Markus Eckerstorfer,
Eirik Malnes,
Hannah Vickers
:
Snow avalanche segmentation in SAR images with Fully Convolutional Neural Networks
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2020
DOI /
ARKIV
Kristoffer Rypdal,
Filippo Maria Bianchi,
Martin Rypdal
:
Intervention Fatigue is the Primary Cause of Strong Secondary Waves in the COVID-19 Pandemic
International Journal of Environmental Research and Public Health (IJERPH) 2020
DOI /
ARKIV
Filippo Maria Bianchi,
Martine Espeseth,
Njål Trygve Borch
:
Large-Scale Detection and Categorization of Oil Spills from SAR Images with Deep Learning
Changkyu Choi,
Filippo Maria Bianchi,
Michael Kampffmeyer,
Robert Jenssen
:
Short-Term Load Forecasting with Missing Data using Dilated Recurrent Attention Networks
Proceedings of the Northern Lights Deep Learning Workshop 2020
DOI /
ARKIV /
ARKIV
Alessandro Cinti,
Filippo Maria Bianchi,
Alessio Martino,
Antonello Rizzi
:
A Novel Algorithm for Online Inexact String Matching and its FPGA Implementation
Filippo Maria Bianchi
:
Learning representations of multivariate time series with missing data
Karl Øyvind Mikalsen,
Cristina Soguero-Ruiz,
Filippo Maria Bianchi,
Robert Jenssen
:
Noisy multi-label semi-supervised dimensionality reduction
Michael C. Kampffmeyer,
Sigurd Løkse,
Filippo Maria Bianchi,
Lorenzo Livi,
Arnt Børre Salberg,
Robert Jenssen
:
Deep divergence-based approach to clustering