Bilde av Eltoft, Torbjørn
Foto: Geir Antonsen
Bilde av Eltoft, Torbjørn
Institutt for fysikk og teknologi torbjorn.eltoft@uit.no +4777645184 Tromsø FPARK E 311.1

Eltoft, Torbjørn


Professor / Jordobservasjon / Senterleder CIRFA


  • Debanshu Ratha, Malin Johansson, Andrea Marinoni, Torbjørn Eltoft :
    Performance Analysis of Roll-Invariant PolSAR Parameters from C-band images with Regard to Sea Ice Type Separation
    Electronic proceedings (EUSAR) 2022 ARKIV
  • Eduard Khachatrian, Saloua Chlaily, Torbjørn Eltoft, Andrea Marinoni :
    A Multimodal Feature Selection Method for Remote Sensing Data Analysis Based on Double Graph Laplacian Diagonalization
    IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2021 ARKIV / DOI
  • Cornelius Quigley, Camilla Brekke, Torbjørn Eltoft :
    Inferring the Dielectric Properties of Oil Slick from Multifrequency SAR imagery via a Polarimetric Two-Scale Model
    Electronic proceedings (EUSAR) 2021 ARKIV / FULLTEKST
  • Salman Khaleghian, Habib Ullah, Thomas Kræmer, Nick Hughes, Torbjørn Eltoft, Andrea Marinoni :
    Sea Ice Classification of SAR Imagery Based on Convolution Neural Networks
    Remote Sensing 2021 ARKIV / DOI
  • Eduard Khachatrian, Saloua Chlaily, Torbjørn Eltoft, Wolfgang Fritz Otto Dierking, Frode Dinessen, Andrea Marinoni :
    Automatic Selection of Relevant Attributes for Multi-Sensor Remote Sensing Analysis: A Case Study on Sea Ice Classification
    IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2021 ARKIV / DOI
  • Salman Khaleghian, Habib Ullah, Thomas Kræmer, Torbjørn Eltoft, Andrea Marinoni :
    Deep Semisupervised Teacher–Student Model Based on Label Propagation for Sea Ice Classification
    IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2021 ARKIV / FULLTEKST / DOI
  • Saloua Chlaily, Thomas Kræmer, Torbjørn Eltoft, Andrea Marinoni :
    A wavelet-based thermal noise removal approach for Sentinel-1 records on polar areas
    Electronic proceedings (EUSAR) 2021 FULLTEKST
  • Muhammad Asim, Camilla Brekke, Arif Mahmood, Torbjørn Eltoft, Marit Reigstad :
    Improving Chlorophyll-a Estimation from Sentinel-2 (MSI) in the Barents Sea using Machine Learning
    IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2021 ARKIV / DOI
  • Desta Haileselassie Hagos, Theofilos Kakantousis, Vladimir Vlassov, Sina Sheikholeslami, Tianze Wang, Jim Dowling m.fl.:
    ExtremeEarth meets satellite data from space
    IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2021 ARKIV / DOI
  • Eduard Khachatrian, Saloua Chlaily, Torbjørn Eltoft, Andrea Marinoni :
    Selecting principal attributes in multimodal remote sensing for sea ice characterization
    VDE Verlag GmbH 2021
  • Eduard Khachatrian, Saloua Chlaily, Torbjørn Eltoft, Paolo Gamba, Andrea Marinoni :
    Unsupervised Band Selection for Hyperspectral Datasets by Double Graph Laplacian Diagonalization
    IEEE International Geoscience and Remote Sensing Symposium proceedings 2021 DOI
  • Muhammad Asim, Camilla Brekke, Arif Mahmood, Torbjørn Eltoft, Marit Reigstad :
    Ocean Color Net (OCN) for the Barents Sea
    IEEE International Geoscience and Remote Sensing Symposium proceedings 2020
  • Cornelius Quigley, Camilla Brekke, Torbjørn Eltoft :
    Retrieval of Marine Surface Slick Dielectic Properties From Radarsat-2 Data via a Polarimetric Two-Scale Model
    IEEE Transactions on Geoscience and Remote Sensing 2020 ARKIV / DOI
  • Katalin Blix, Martine Espeseth, Torbjørn Eltoft :
    Machine Learning for Arctic Sea Ice Physical Properties Estimation Using Dual-Polarimetric SAR Data
    IEEE Transactions on Geoscience and Remote Sensing 2020 ARKIV / DOI
  • Cornelius Quigley, Camilla Brekke, Torbjørn Eltoft :
    Comparison Between Dielectric Inversion Results From Synthetic Aperture Radar Co- and Quad-Polarimetric Data via a Polarimetric Two-Scale Model
    IEEE Transactions on Geoscience and Remote Sensing 2020 ARKIV / DOI
  • Katalin Blix, Martine Espeseth, Torbjørn Eltoft :
    Comparison of Machine Learning Methods for Predicting Quad-Polarimetric Parameters from Dual-Polarimetric SAR Data
    IEEE International Geoscience and Remote Sensing Symposium proceedings 2020 ARKIV / DOI
  • Eduard Khachatrian, Saloua Chlaily, Torbjørn Eltoft, Andrea Marinoni :
    Unsupervised Information Selection In Multimodal Sea Ice Remote Sensing
    The International Association for Hydro-Environment Engineering and Research (IAHR) 2020 FULLTEKST
  • Torbjørn Eltoft, Anthony Paul Doulgeris :
    Model-Based Polarimetric Decomposition With Higher Order Statistics
    IEEE Geoscience and Remote Sensing Letters 2019 ARKIV / DOI
  • Andrea Marinoni, Martine Espeseth, Paolo Gamba, Camilla Brekke, Torbjørn Eltoft :
    Assessment of Polarimetric Variability by Distance Geometry for Enhanced Classification of Oil Slicks Using SAR
    IEEE International Geoscience and Remote Sensing Symposium proceedings 2019 ARKIV / DOI
  • Manolis Koubarakis, Konstantina Bereta, Dimitris Bilidas, Konstantinos Giannousis, Theofilos Ioannidis, Despina-Athanasia Pantazi m.fl.:
    From Copernicus big data to extreme Earth analytics
    Advances in Database Technology - EDBT 2019 DOI
  • Torbjørn Eltoft, Stian Normann Anfinsen, Anthony Paul Doulgeris, Laurent Ferro-Famil :
    Polarimetric SAR Modelling: Mellin Kind Statistics and Time-Frequency Analysis
    Springer 2018 DOI
  • Katalin Blix, Károly Pálffy, Viktor R. Tóth, Torbjørn Eltoft :
    Remote Sensing of Water Quality Parameters over Lake Balaton by Using Sentinel-3 OLCI
    Water 2018 ARKIV / DOI
  • Katalin Blix, Martine Espeseth, Torbjørn Eltoft :
    Machine Learning simulations of quad-polarimetric features from dual-polarimetric measurements over sea ice
    Electronic proceedings (EUSAR) 2018 ARKIV / DOI
  • Temesgen Gebrie Yitayew, Wolfgang Dierking, Dmitry V Divine, Torbjørn Eltoft, Laurent Ferro-Famil, Anja Rösel m.fl.:
    Validation of Sea-Ice Topographic Heights Derived From TanDEM-X Interferometric SAR Data With Results From Laser Profiler and Photogrammetry
    IEEE Transactions on Geoscience and Remote Sensing 14. juni 2018 DOI
  • Katalin Blix, Torbjørn Eltoft :
    Evaluation of feature ranking and regression methods for oceanic chlorophyll-a estimation
    IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 22. mars 2018 ARKIV / DOI
  • Irena Hajnsek, Guiseppe Parella, Armando Marino, Torbjørn Eltoft, Marius Necsoiu, Leif E. Eriksson :
    Cryosphere Application. Delkapittel i "Polarimetric Synthetic Aperture Radar: Principles and Application." redigert av Irena Hajnsek og Yves-Louis Desnos
    Springer 2021
  • Johannes Lohse, Torbjørn Eltoft, Salman Khaleghian, Qiang Wang :
    Sea ice classification methodologies developed in CIRFA
    2022
  • Debanshu Ratha, Malin Johansson, Andrea Marinoni, Torbjørn Eltoft :
    GD-derived Polarimetric Parameters for identifying Sea Ice in C-band SAR Images
    2022
  • Wolfgang Fritz Otto Dierking, Andrea Schneider, Torbjørn Eltoft, Sebastian Gerland :
    CIRFA Cruise 2022. Cruise report.
    2022 FULLTEKST
  • Katalin Blix, Muhammad Asim, Huan Li, Torbjørn Eltoft :
    Comparison of in-situ and Sentinel 3 OLCI radiometric measurements in Lake Balaton
    2022
  • Muhammad Asim, Camilla Brekke, Torbjørn Eltoft, Katalin Blix :
    Preliminary analysis of combined Sentinel-2 and Landsat-8 remote sensing reflectance products for improved monitoring of Chlorophyll-a over the Barents Sea
    2022
  • Muhammad Asim, Camilla Brekke, Torbjørn Eltoft, Katalin Blix :
    Optical Remote Sensing and Machine Learning for Water Quality Parameter Retrieval in the Barents Sea
    2022
  • Torbjørn Eltoft, Camilla Brekke, Raymond Kristiansen :
    Nasjonalt senter for jordobservasjon i Tromsø
    Nordlys 2021 FULLTEKST
  • Salman Khaleghian, Thomas Kræmer, Alistair Everett, Åshild Kiærbech, Nick Hughes, Torbjørn Eltoft m.fl.:
    Synthetic aperture radar data analysis by deep learning for automatic sea ice classification
    2021
  • Malin Johansson, Torbjørn Eltoft, Suman Singha, Polona Itkin, Gunnar Spreen, Stephen Howell m.fl.:
    L- and C-band Synthetic Aperture Radar data analysis from the yearlong MOSAiC expedition
    2021
  • Torbjørn Eltoft, Malin Johansson, Anthony Paul Doulgeris, Suman Singha, Polona Itkin, Katalin Blix :
    Advancing information extraction on Arctic sea ice using a multi-sensor and multi-temporal integrated approach
    2021
  • Torbjørn Eltoft :
    Can Transfer Learning Solve Remote Sensing Challenges in Ocean Colour?
    2021
  • Torbjørn Eltoft :
    Challenges in DL-based sea ice classification from SAR. Lessons from ExtremeEarth
    2021
  • Torbjørn Eltoft :
    Deep Learning Challenges in Sea Ice Classification
    2021
  • Torbjørn Eltoft :
    CIRFA: Remote Sensing in Arctic Applications
    2021
  • Debanshu Ratha, Torbjørn Eltoft, Andrea Marinoni :
    Discrimination of Ice and Water using PolSAR Parameter-based Clustering
    2021
  • Salman Khaleghian, Habib Ullah, Thomas Kræmer, Torbjørn Eltoft, Andrea Marinoni :
    A deep semi-supervised learning method based on transductive label propagation for sea/ice classification
    2021
  • Cornelius Quigley, Camilla Brekke, Torbjørn Eltoft :
    Stability Analysis of Freely Floating Oil Slick in Multifrequency Airborne SAR Imagery Acquired in S- and L-band
    2021
  • Salman Khaleghian, Thomas Kræmer, Alistair Everett, Åshild Kiærbech, Nick Hughes, Torbjørn Eltoft m.fl.:
    Deep learning for enhanced sea ice understanding
    2020
  • Salman Khaleghian, Habib Ullah, Thomas Kræmer, Alistair Everett, Åshild Kiærbech, Joakim Pedersen m.fl.:
    Automatic sea ice classification using Synthetic aperture radar data analysis by deep learning
    2020
  • Sebastian Gerland, Dmitry V Divine, Wolfgang Fritz Otto Dierking, Anthony Paul Doulgeris, Torbjørn Eltoft, Malin Johansson :
    Use of in situ and airborne Arctic sea ice surveys for SAR satellite remote sensing application improvements
    2020
  • Katalin Blix, Torbjørn Eltoft :
    Machine Learning Remote Sensing for Ecosystem Monitoring in the Arctic
    2019
  • Katalin Blix, Torbjørn Eltoft :
    A Generalized Chlorophyll-a Estimation Model for Complexity-Diverse Waters
    2019
  • Katalin Blix, Károly Pálffy, Viktor R. Tóth, Torbjørn Eltoft :
    Machine Learning for Remote Sensing Complex Waters
    2019
  • Katalin Blix, Martine Espeseth, Torbjørn Eltoft :
    Up-Scaling From Quad-polarimetric To Dual-polarimetric SAR Data Using Machine Learning Gaussian Process Regression
    2018

  • De 50 siste resultatene fra Cristin vises på siden. Se alle arbeider i Cristin her →


    Forskningsinteresser

    • Signal Processing  
    • Image Processing
    • Neural Networks
    • Remote Sensing  

    Medlem i forskningsgruppe



    FPARK E 311.1

    Klikk for større kart