Arctic Centre for Sustainable Energy

Photo credit: Jarmo Piironen (Most Photos)

In 2017 UiT established the Arctic Centre for Sustainable Energy (ARC). ARC is an interdisciplinary centre focusing on Arctic challenges and conditions within renewable energy and greenhouse gas management. The centre combines expertise in physics, humanities, chemistry, social sciences, applied mathematics, marine biology, computer science, and electrical engineering.

The center’s main objectives are:

Please send us an email if you want to subscribe to ARC's informal, bi-weekly newsletter Short news. 


The Board is ARC's main decision-making body. The Board consists of representatives (deans, department heads or senior scientific staff) from the four active faculties, as well as a representative from the rector team at UiT.

The day-to-day management is done by the ARC leader, who has the overall responsibility and management function for the academic and administrative activities of the centre. The ARC leader is supported by the ARC project coordinator. 

The Management Team consists of seven Research coordinators and their deputies. They are responsible for the coordination of the activities and projects that fall within ARC's seven research areas.


Research coordinators - ARC research areas

The ARC Board

Latest news | 21 February 2023
Longyearbyen henter erfaringer fra Smart Senja 

Det var stort oppmøte når Longyearbyen Lokalstyre i forrige uke, i samarbeid med samfunnsvitere på UiT, arrangerte energikafe etter modell fra Smart Senja. Longyearbyen står overfor en omfattende energiomstilling, og med energikafeen ønsket lokalstyret å skape en sterkere lokal involvering og forankring til denne prosessen. 

Trykk her for å lese mer om energikafeen og hvilke tanker de to involverte masterstudentene Anna B. Olerud og Christian T. Berlinger gjør seg om energidiskusjonene i lokalsamfunnet. 

News archive

Upcoming events

No events are scheduled at the moment
Past events

23.11.2022 - Fyrtårn Project SusSTEMED

18.11.2022 - ARC Digitalization seminar

12.10.2022 - ARC mini symposium 

15.06.2022 - ARC seminar Toril Ringholm 

07.06.2022 - ARC seminar - Chiara Bordin

18.05.2022 - ARC seminar - Katja Karppinen 

09.05.2022 - ARC seminar - Clara Good 

07.04.2022 - ARC seminar - Hoai Phuong Ha 

31.03.2022 - ARC seminar - Berit Kristoffersen 

29.03.2022 - ARC seminar - Filippo Bianchi 

24.03.2022 - ARC seminar - Hans C. Bernstein 

18.02.2022 - Presentation: The ARC Methodology 

15.02.2022 - ARC seminar - Jennifer Claire Hayward 

10.02.2022 - ARC seminar - Matteo Chiesa 



Research coordinator: Hoai Phuong Ha
Deputy: Filippo Maria Bianchi
ARC researchers in the Digitalization area work on finding solutions to some of the challenges that the development of renewable energy systems bring about, while at the same time making use of the opportunities that technology shifts present.

For instance, renewable energy systems typically produce varying loads, which in turn complicates voltage stability and the capacity of the electrical distribution grid. On the other hand, new inventions such as smart metering and digital algorithms can be used to optimize electricity usage and open new energy markets. Digital technologies are key to both.

Digitalization also contributes to climate neutrality goals via advanced climate and environmental observation. These observations are needed to understand and predict the flux of greenhouse gases and air pollutants. However, according to the European Green Deal challenges, in-situ measurements for hotspots with strong emissions of greenhouse gases and air pollutants are still lacking. ARC-researchers respond directly to this by studying and developing energy-efficient autonomous in-situ measurement technologies.

Other members
Chiara Bordin

Qixia Zhang 
Michele Guerrera 
Jonas Berg Hansen
Hoang Loc La 
Silvia Anna Cordieri
Torgeir Sulheim 

Key publications 
See overview of Hoai Phuong Ha published articles here
See overview of Filippo Maria Bianchi published articles here 

Ongoing projects and activities 



  • eX3 - Experimental Infrastructure for Exploration of Exascale Computing, RCN Research Infrastructure, 2017 - 2022   
  • Distributed Arctic Observatory (DAO): A Cyber-Physical System for Ubiquitous Data and Services Covering the Arctic Tundra, RCN IKTPLUSS initiative, 2017 -  2022 


Research coordinator: Bjarte Hoff
In the research area of eSystems, ARC scientists are working on the future electric energy systems and conversion technology. Electrification of our society creates new types of energy systems that come with new challenges.

In electric transport, the introduction of components like batteries, hydrogen fuel cells, and electric motors changes the on-board energy system in electric vehicles, ships, and aircrafts. In the electricity grid, the introduction of distributed and intermittent renewable energy changes our grid with local production and power electronic converters. These alter the grid's behaviour and challenge its stability and protection schemes. Power electronic converters are a key enabler for electrification and control of electric power, hence an important research activity within eSystems. 

eSystems contribute to climate neutrality goals through electrification and preparing energy systems for an increased amount of renewable energy and sustainable energy carriers like hydrogen. With electric energy from renewable sources, fossil fuel can be replaced by more sustainable solutions.  

Other members
Charu Sharma
Pawan Sharma 
Nasrin Kianpoor 
Umer Sohail
Hussein Al-Sallami
Martin Haug
Koen van Greevenbroek

Key publications

See overview of Bjarte Hoff's published articles here.

Ongoing projects and activities



Carbon capture and biomass utilization

Research coordinator: Hans C. Bernstein  
Deputy: Katja Karppinen  
Science and technology that address the climate crisis are now a priority for all, but Arctic societies are unique stakeholders because we are experiencing the most rapid changes on the planet. Atmospheric carbon dioxide levels are at a historic high, recently surpassing 400 ppm for the first time in human history.

We are also contending with historic atmospheric methane gas concentrations, which has 84-times greater heat trapping effects than carbon dioxide. The people of the Arctic  – together with the world  – have reached the understanding that emission reductions are necessary for sustainability but we must also invest in new technologies for carbon capture, sequestration and utilization. Biological organisms, such as plants, algae and bacteria, can capture carbon and integrate into their metabolites and biomass. In plants, the molecules are mostly integrated as sugar molecules into cell wall components, such as cellulose. The annual production of cellulose through photosynthesis is estimated to be 15 x 1012 tons, forming a major sink and reservoir for carbon that can be utilized for sustainable bioenergy production.  

How will ARC provide solutions? We support research, education and industrial cooperation with the ultimate goal of controlling the accumulation of carbon from the atmosphere and aid its utilization for bioenergy solutions. We believe that fostering fundamental science and innovation together with raising public awareness will lead to measurable action. ARC’s mission is unique because of its focus on social and economic drivers in high latitude societies. 

Other members
Kirsten Krause
Grzegorz Konert
Sebastian Petters
Michael Dills
Hanna Schweitzer
Muhammad Furwan Ashraf 
Corine Faehn
Hilary Edema
Nerea Aalto

Key publications 
See overview of Hans C. Bernstein's published articles here
See overview of Katja Karppinen's published articles here

Ongoing projects and activities 

  • Arctic Algae Genomes: Gaining genomic insight into Arctic microalgae carbon capture technologies. This project shall resolve the unique genomes that underpin the successful carbon capture and utilization efforts being performed here in northern Norway. This strategic investment by ARC will provide a permanent resource that will enable future optimization of microalgae cultivation conditions to promote the production of marine biomass from industrial waste CO2. Fully annotated genome sequences of these industrially relevant arctic diatoms will enable ARC researchers to provide the next level of biological insight required to optimize the process and discover new biotechnological applications such as the synthesis of higher value bioproducts for food, feed and sustainable bioproducts. 

  • Plant biomass consortium: Although the major potential of lignocellulose biomass for bioenergy production, energy is not easily available due to the complex structure and wide range of chemical bonds and cross-linkages between molecules in plant cell wall. In the consortium we study possibilities in the cell wall degradation process using new biological sources of degradative enzymes. Team: Associate Professor Katja Karppinen, PhD student Hilary Edema, Post Doc Furqan Ashraf, and Post Doc Amos Samkumar.

  • ABSORB - Carbon Storage from Arctic Biomes: The aims for the project are to study biological processes unique to Arctic with dual focus to both marine microorganisms and terrestrial plant-root systems. We investigate mechanisms of carbon channeling into marine and terrestrial biomass and recalcitrant compounds and ultimately aim to establish new biotechnologies and innovations for carbon capture and utilization (food, feed, bioproducts). Click here to read more about ABSORB. 
  • Diatoms with Increased Carbon Capture Efficiency (DICCE). In the DICCE-project, researchers aim to innovate new carbon capture and utilization technology by domesticating Arctic diatom: prokaryote communities and stimulating genome-encoded properties that promote CO2 uptake and the bio-physical properties that promote carbon-trapping in microbial aggregates.

  • EcoTech4CCU workshop. EcoTech4CCU was a 3-day workshop generously sponsored by Mr. Fredrik Paulsen through The University of the Arctic (UArctic) and hosted by UiT – The Arctic University of Norway and The Arctic Centre for Sustainable Energy (ARC). The goals were to provide an inspirational educational experience for graduate students, present the state-of-the-science to the general public and identify consensus ideas as well as critical next steps for integrating fundamental science in ecology and biology with applied technology for biological carbon capture for sequestration and utilization. 

Advanced Materials

Research coordinator: Abhik Ghosh  
Deputy: Matteo Chiesa  
Material technology is one of the columns on which a new future is built. The properties of a new material can be the difference to make or break a new concept. In the world of renewable energy, material science has been one of the main reasons that solar cell technology has become so efficient and cheap at the same time. 

ARC scientists in the Advanced materials area study the material deployed in renewable energy technologies, improve already existing ones and help develop new materials that will be used in future low-carbon societies.  

Other members
Hao Chen 
Tuza Olukan 
Simon Larsen 
Abraham Alemayehu 
Abdulrahman Saleh Qaid Alhagri
Karoline Ingebrigtsen 
Odin Foldvik Eikeland 
Krister Johanessen

Key publications 
See overview of Abhik Ghosh's published articles here 
See overview of Matteo Chiesa's published articles here

Ongoing projects and activities 

About the Research coordinator
Abhik Ghosh grew up in India and did his Ph.D. at the University of Minnesota under the tutelage of Paul G. Gassman, while also extensively collaborating with Jan Almlöf (formerly a professor at UiO and a professor II at UiT). After postdoctoral stints in bioinorganic chemistry with Larry Que and David Bocian, he took up a faculty position at UiT in 1996, where he has been full professor since 2000. He was a Senior Fellow of the San Diego Supercomputer Center (1997-2004) and on several occasions a Visiting Professor at the University of Auckland, New Zealand (2006-2015). Since 2021, he has led the UiT’s Center for Sustainable STEM Education.

Abhik has served on the editorial boards of the Journal of Biological Inorganic Chemistry, the Journal of Inorganic Biochemistry, and the Journal of Porphyrins and Phthalocyanines. He edited the popular science book Letters to a Young Chemist (Wiley, 2011) and coauthored the textbook Arrow Pushing in Inorganic Chemistry: A Logical Approach to the Chemistry of the Main Group Elements (Wiley, 2014); the latter won the 2015 PROSE Award for Best Textbook in the Mathematical and Physical Sciences. In 2022, he became a member of the European Academy of Sciences and also received the Hans Fischer Career Award for Lifetime Achievements in Porphyrin Chemistry. As a gay chemist, Abhik has been involved in a variety of projects aimed at diversifying chemistry.

Abhik’s research interests center broadly around soft materials based on porphyrin analogues and their applications to both medicine and renewable energy. Current projects in his laboratory focus on

(a) synthetic method development
(b) photodynamic therapy and cancer theranostics
(c) dye-sensitized solar cells
(d) fluorinated materials
(e) functionalization of low-dimensional, especially 2D, materials, and
(f) high- and low-valent transition metal compounds and their applications to catalysis and renewable energy

Power Generation

Research coordinator: Tobias Boström 
Deputy: tba 
In total, the sun provides about 10 000 times the amount of energy that is used globally in a year. If we were to store all the solar energy from one hour of incoming sunshine, we would have enough power to run the world for one year! And this is just solar power. If we add wind power, hydropower, and tidal forces to the list, it quickly becomes clear that establishing a modern society based on renewable sources is not a question of possibility  it is a matter of solving practical issues. 

In the area of Power generation, ARC researchers look at how we can solve the practical issues that stem from both the production and consumption of renewable energy. 

Other members
Albara Mustafa

Key publications

Projects and activities 

Society and ethics

Research coordinator: Berit Kristoffersen  
Deupty: Jennifer Clare Heyward  
The transition from a global society dependent on oil towards a sustainable society based upon renewable energy is one of the biggest challenges of our time. Such a process brings up everything from ethical to societal questions that need to be considered, in order to build a solid foundation for the solutions that are being implemented.

 Philosophy and social sciences are important tools to be one step ahead of the development, and guide and coordinate technological and social evolution. They lay down the stepping stones that are needed to cross the boundaries between theory and practice when exploring new territories. And are key to achieve the social and international cooperation that is needed for success on a larger scale.  

Other members
Toril Merete Ringholm 
Hans Kristian Hernes
Øyvind Stokke 
Anna-Karin Margareta Andersson
Marie Koksvik Thorsen
Inger Helene Svartdal 
Erik W. Strømsheim
Magnus E. Eilertsen
Cladua. S. W. Cheng 

Key publications 
See overview of Berit Kristoffersen's published articles here
See overview of Jennifer Clare Heyward's published articles here

Ongoing projects and activities



Research coordinator: Clara Good
Deputy: Mohamad Mustafa 
We are all familiar with the electric car. But did you know that there is an electric fishing boat in Senja, and two electric airplanes in Bardu? ARC is testing and developing further possibilities within low carbon transport at these sites. We need to develop more then just ground based transport alternatives, to achieve a complete transition to an oil free society.

Sea- and air alternatives are as important in the bigger picture. The two first electric airplanes to be tested in an arctic environment were recently delivered to an airbase in Bardu, North Norway. They were baptised in the norwegian soda ‘Solo’, and taken for a first spin on the tarmac (video). But this project is not only about testing the capability of the airplanes. It is about testing the whole chain of components required to make them run on locally produced electricity. The hangar walls have been covered with solar panels and and the energy is stored on site, so that the planes can be charged without using power from the external grid. The project can be seen as a protoype of a renewable energy airport, that can be scaled up to commercial sizes, based on the information from this test.  

The same goes for the fishing boat, where the bottle neck is the need for highly efficient charging stations. A boat can carry a lot of batteries, in contrast to an airplane, and the challenge is to ensure that it charges fast enough to be used in a commercial fishing schedule. This requires rethinking the backbone of the electrical system, in our case for some traditional fishing townships at Senja.  

Other members
Bright Adu-Gyamfi

Key publications 
See overview of Clara Good's published articles here
See overview of Mohamad Mustafa's published articles here

Ongoing projects and activities 

Our projects