Skriv ut Lukk vindu


 

Vår 2025

FYS-8033 Deep Learning - 10 stp


The course is administrated by

Institutt for fysikk og teknologi

Type of course

The course is available as a singular course.

Programstudents may register for the course through Studentweb. The registration deadline is September 1st/February 1st.

Other PhD students at UiT and external applicants may apply for admission through Søknadsweb, application code 9301. The application deadline is June 1st for the autumn semester and December 1st for the spring semester.


Course overlap

FYS-3033 Deep learning 8 ects

Course contents

Deep Learning, a subfield of machine learning, has in recent years achieved state-of-the-art performance for tasks such as image classification, object detection and natural language processing. This course will study recent deep learning methodology such as e.g. convolutional neural networks, autoencoders and recurrent neural networks, will discuss in detail recent advances in the field, and will provide the students with the required background and up-to-date knowledge to implement, train and debug these models. There will be a significant practical component, where students will gain hands-on experience on contemporary problems. The course will in addition to deep learning algorithms contain elements of image processing, pattern recognition and statistics.

Admission requirements

PhD students or holders of a Norwegian master´s degree of five years or 3+ 2 years (or equivalent) may be admitted. PhD students must upload a document from their university stating that there are registered PhD students. This group of applicants does not have to prove English proficiency and are exempt from semester fee. Holders of a Master´s degree must upload a Master´s Diploma with Diploma Supplement / English PhD students at UiT The Arctic University of Norway register for the course through StudentWeb . External applicants apply for admission through SøknadsWeb. Application code 9303.

All external applicants have to attach a confirmation of their status as a PhD student from their home institution. Students who hold a Master of Science degree, but are not yet enrolled as a PhD-student have to attach a copy of their master's degree diploma. These students are also required to pay the semester fee.


Objective of the course

Knowledge - The student is able to:

Skills - The student is able to:

General competence - The student is able to:


Language of instruction

The language of instruction is English and all of the syllabus material is in English. Examination questions will be given in English, but may be answered either in English or a Scandinavian language.

Teaching methods

Lectures: 30 hours

Exercises: 30 hours