Skriv ut Lukk vindu


 

Høst 2019

FYS-2021 Machine Learning - 10 stp


The course is administrated by

Institutt for fysikk og teknologi

Type of course

The course is available as a singular course. The course is also available to exchange students and Fulbright students.

Course contents

The course will introduce the students to the fundamental concepts in machine learning and will study widely used and popular machine learning algorithms for analysing data in the modern society. The course will cover elementary methods for both supervised and unsupervised learning, both for regression and classification. Supervised methods will include technologies such as decision trees, linear discrimination and neural networks. TUnsupervised methods covered will include machine learning methods based on linear algebra as well as standard clustering methods. The course will have a significant practical component, in which various applications will be treated in the form of case studies.

Application deadline

Applicants from Nordic countries: 1 June for the autumn semester and 1 December for the spring semester. 

Exchange students and Fulbright students: 1 October for the spring semester and 15 April for the autumn semester.


Admission requirements

Generell studiekompetanse eller realkompetanse + Matematikk R1 eller (S1+S2) og enten Matematikk (R1+R2) eller Fysikk (1+2) eller Kjemi (1+2) eller Biologi (1+2) eller Informasjonsteknologi( 1+2) eller Geologi (1+2) eller Teknologi og forskningslære (1+2).

Local admission, application code 9336 - enkeltemner i realfag.


Objective of the course

Knowledge - The student is able to:

Skills - The student is able to:

General expertise - The student is able to:


Language of instruction

The language of instruction is English and all of the syllabus material is in English. Examination questions will be given in English, but may be answered either in English or a Scandinavian language.

Teaching methods

Lectures: 30 hours

Exercises : 30 hours


Assessment

Portfolio assessment of 3 project assignments and a final 4 hours written examination. All modules in the portfolio are assessed as a whole and one combined grade is given.

Assessment scale: Letter grades A-F, where the letters A-E are passed and F is failed.

Re-sit examination (section 22): There is no access to a re-sit examination in this course.

Postponed examination (sections 17 and 21): Students with valid grounds for absence will be offered a postponed examination. Postponed project assignments are arranged during the semester if possible, otherwise early in the following semester. Postponed written examination is held early in the following semester. See indicated sections in Regulations for examinations at the UiT The arctic university of Norway for more information.

See indicated sections in Regulations for examinations at the UiT The arctic university of Norway for more information.

.


Date for examination

Written 06.12.2019

The date for the exam can be changed. The final date will be announced at your faculty early in May and early in November.