autumn 2018

SMN6192 Game- and Graph Theory / Discrete Mathematics - 5 stp

Sist endret: 08.02.2019

The course is administrated by

Faculty of Engineering Science and Technology

Studiested

Narvik | Ukjent | Annet |

Application deadline

Applicants from Nordic countries: 1 June for the autumn semester and 1 December for the spring semester. Exchange students and Fulbright students: 1 October for the spring semester and 15 April for the autumn semester.

Type of course

Theoretical May be taken as a single course

Admission requirements

Recommended passed mathematics courses in the bachelor engineering education or corresponding mathematics courses.

Application code: 9371

Course contents

  • Combinatorics including combinations
  • Properties of integers and number theory
  • Types of proofs
  • Relations and functions, equivalence relations
  • Finite state machines and minimization of these
  • Recurrence relations with unarranged problems
  • Graph theory
  • Examples of applications in gaming  

Recommended prerequisites

IGR1600 Mathematics 1, IGR1601 Mathematics 2, IGR1613 Mathematics 3 / Physics 2

Objective of the course

Knowledge (K): 

After completing the linear algebra course the candidate:

  • Has advanced knowledge of concepts within discrete mathematics
  • Has thorough knowledge of central arguments, combinatorial counting methods and methodologies within the listed concepts in discrete mathematics and know how to apply these in mathematical problems
  • Can analyse formulated discrete problems and identify methods to solve these

Skills (S):

After completing the linear algebra course the candidate:

  • Can recognize and identify discrete problems, make use of a variety of counting methods, elementary number theory, finite state machines, recurrence relations and graphs and trees in order to solve problems.
  • Can analyse and deal critically with theories and arguments within the field and use these to structure and formulate scholarly arguments
  • Can identify arguments that can be utilized to solve practical problems like unarranged recurrence relations and game related tasks.

General competence (GC):

After completing the linear algebra course the candidate:

  • Can analyse relevant discrete mathematics problems
  • Can apply the knowledge and skills within discrete mathematics to complete assignments
  • Can communicate about different aspects in discrete mathematics, particularly explaining in mathematical terms how to deal with counting problems
  • Can use the knowledge for concepts, theories and methods in discrete mathematics in relevant engineering areas.

Language of instruction

English

Teaching methods

The course is taught intensively during two non-consecutive weeks, in which a combination of lectures followed by task solving sessions and project work.

All lectures are streamed and recorded. Videos provided in addition to this are made available to all students attending the course.

Assessment

Course work requirements: One individual project work in Graph Theory must be submitted and approved in a 3-steps process.

Examination og assessment: A final exam, which is a 3 hours written exam. Scale of grades: A-F in which F means fail A re-sit exam will be arranged for this course

Date for examination

Written examination 17.12.2018

The date for the exam can be changed. The final date will be announced in the StudentWeb early in May and early in November.

Schedule

Course overlap

SMN6192 Discrete Mathematics 5 stp

Recommended reading/syllabus

Grimaldi: Discrete and Combinatorial Mathematics. Addison-Wesley Theory and examples provided on Canvas Project work Lecture notes, recorded lectures, provided videos and task solutions

Additional literature

K.H. Rosen: Discrete and its applications.

E. Kreyszig: Advanced engineering mathematics.