Master Electrical Engineering

120 ECTS

Narvik

Based on the document “Vilkår for bruk av tilleggsbetegnelsen Sivilingeniør (siv.ing.)” approved by The Norwegian Association of Higher Education Institutions spring 2016.

The programme description has been approved by the board of Faculty of Engineering Science and Technology on 01.12.2017
| Study programme name | Bokmål: Elektroteknikk
Nynorsk: Elektroteknikk
Engelsk: Electrical Engineering- Master |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree obtained</td>
<td>Master of Science</td>
</tr>
</tbody>
</table>
| Target group | The Master Program in Electrical Engineering is suitable for
students with an interest in power systems and electric energy
sources, energy storage and conversion, as well as
advanced electric motor drives. |
| Admission requirements, required prerequisite, recommended prerequisite knowledge | A relevant undergraduate bachelor Engineering program with
minimum 30 credits mathematic/statistics topics.
The candidate should have basic knowledge in power electronics
and electrical machines. Basic knowledge of power systems is also
an advantage. |
| The study programme’s Learning Outcome | After completing the study program the candidate has the
following learning outcome: |

Knowledge:
- has basic knowledge about economics and innovation, with
special focus on creating an enterprise, developing concepts
and protection of rights.
- knows the principles of electric power system and understands
the limitations and bottlenecks in such a system. Key topics are
renewable energy, stability of power systems and operation
and control of power systems.
- has a thorough knowledge of electrical machines, their
dynamics and choice of suitable converter types for motor
drives. The candidate also knows about available
measurement sensors and how these could be integrated in
an advanced control system.
- has basic knowledge of computer architecture and
programming.

Skills:
- can use linear algebra and numerical methods as
mathematical tools for analyzing physical processes and
technical solutions.
- can combine power electronics, control engineering and
electrical systems into advanced electric motor drives.
- can perform basic simulations and analyzes of power systems,
in regards to load flow, stability, operating conditions or
economic considerations.
- can use computers, microcontrollers or other types of
microelectronics in order to control and monitor mechatronic
systems.
- completes the study program through performing a larger
diploma work of a six-month duration. |
General competence:
- gains insight into new and innovative technologies and will be able to put these into a society perspective.
- gains insight into various aspects of future network systems, energy solutions and climate challenges.
- is able to combine energy systems with signal transfer and ICT solutions in an overall system with high flexibility.

Academic content and description of the study programme

The program is aimed at automated industrial processes, with the use of computer aided advanced control systems and inverter technologies. In addition, there is an emphasis on a basic understanding of the properties and limitations of power systems, as well as the potential of small-scale renewable energy sources. The study also focuses on applied mathematics, economics and business development.

The program covers the following disciplines:
- Linear Algebra and Numerical Analysis
- Control Engineering
- Instrumentation and Measurement
- Signal Transmission
- Computer Programming
- Programmable Controllers
- Electrical Machines and Power Electronics
- Basic Power System Theory
- Renewable Energy Sources
- Power System Operation and Stability
- Final thesis

See additional information in the different course descriptions.

The program is uniform, except for 5 ECTS of electives, and does not include different modules, and all teaching is on campus. Mandatory tasks are described in the different course descriptions. The program can be done part-time over four years. It will be possible to take part of the studies abroad, provided that external courses are similar in content and scope to those specified in the study plan.

Table: programme structure

<table>
<thead>
<tr>
<th>Semester</th>
<th>10 ECTS</th>
<th>10 ECTS</th>
<th>10 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SMN6190 Linear algebra 2</td>
<td>ELE-3501 Control Engineering</td>
<td>ELE-3500 Power System Fundamentals</td>
</tr>
<tr>
<td></td>
<td>SMN6191 Numerical Methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ELE-3506 Programming</td>
<td>STE6256 Instrumentation & measuring systems</td>
<td>SAD6210 Innovation and economics</td>
</tr>
</tbody>
</table>
Learning activities, examination and assessment

Most courses are based on lectures, self-study and assignments or small projects, individually or in groups. Each 5 ECTS course usually includes 40 lectures, plus supervision time. The handouts can be voluntary or mandatory. Mandatory lab exercises are included in some topics. Scientific theory application and analysis is emphasized in assignment and project solution. The different course descriptions provide additional information.

The study offers a learning foundation where digital tools and online support resources are widely used. Learning resources of each subject are available in an LMS (Learning Management System, currently Canvas). Most of the subject information is gathered there, such as lecture notes, assignments, tests, links, deadlines, etc., and it is also a platform for the main communication with lecturers and fellow students.

Teaching can take place in different ways depending on the topic. Traditional lecture model is used mainly, but “flipped classroom” is included in some subjects.

In a traditional lecture model, teachers will lecture in scheduled hours. However, a part of the hourly scheduled hours will be hours of study, where students can work with lab assignments, tasks that are included in work requirements or tasks that are part of an assessment. The lecturer plus any scientific assistants will be present.

The student's learning is obtained through lecture preparation and processing, voluntary assignments, mandatory work, assignment evaluation, collaboration with other students in groups; laboratory exercises (many of which are mandatory) and a significant amount of self-study.

Flipped classroom is intended to move the lecture out of the classroom, and turn it into a preparatory part for which the
| **Student is responsible.** Preparation consists of the student using textbook, notes and links to the relevant material. The scheduled lectures are used for review of specific topics, and mainly for work with tasks similar to those mentioned above. The flipped classroom model can be run as a "hybrid model", where parts of the topic are run in a lecture model, and other parts in a flipped classroom model. |
| **The study programme's relevance** |
| The program is suitable for candidates who want to work with industrial electrical engineering, automation, power grid operation and utilizing renewable energy sources. The program also provides a basis for working with project management and marketing, or teaching in technical subjects at Bachelor's level. The program also qualifies for doctoral studies in related fields. |
| **Work scope** |
| In order to achieve the defined learning outcome, the students should expect a weekly study workload of 40 hours, including lectures, lab preparation and self-study. The annual work scope of full-time students should be at least 1500 hours. |
| **For master's theses/independent work in master's degrees** |
| The 30 ECTS final master thesis (diploma) can be carried out in close collaboration with industry partners and/or on the basis of existing research and development projects. The work is usually performed individually. Regular status meetings will be held through the entire project period. The diploma will be evaluated solely on the basis of a final written report. |
| **Language of instruction and examination** |
| English |
| **Internationalisation** |
| The education is based on research, which in many cases is related to international research projects. Several diploma projects are closely connected to such projects. |
| **Student exchange** |
| It is possible to study the parts of the master's program at other universities. An individual plan must then be drawn up in consultation with the study coordinator. |
| **Administrative responsibility and academic responsibility** |
| Institute of Electrical Engineering – Faculty of Engineering Science and Technology. |
| **Quality assurance** |
| By the end of each course, the students are offered a QuestBack survey with an electronic questionnaire. Various forms of alternative evaluations are offered, including reference groups. |